A Modern Hydrothermal Synthesis Method of Dendritic Silver Sulfide Nanostructures by Applying Novel Initiating Reagents and Verification of their Behavior in Solar Cells

Document Type : Original Article

Authors

1 Applied Chemistry Department, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 IT Department, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

In this research, the dendritic Silver sulfide nanostructures were successfully synthesized by a simple hydrothermal route. The effect of temperature,  and reaction time, on the morphology and particle dimension was also investigated. Thus, the efficiency of synthesized Silver sulfide nanostructures in thin-film solar cells was evaluated. The results indicated very well that the particle dimension and morphology have effect on solar cells efficiency and dendritic Silver sulfide nano- structures have higher efficiency compared to spherical and rod-like Silver sulfide nanostructures. Moreover, depositing  of dendritic Silver sulfide upon Silver sulfide nanoparticles led to obtaining 3.17% cell efficiency that in comparison with sole dendritic   nanostructures and sole nanoparticles (1.81%), efficiency improvements of 48 and 85% were, respectively, obtained.

Keywords

  1. Salaramoli, E. Maleki, Z. Shariatini, M. Ranjbar, J. Photo- chem. Photobio. A: Chem. 271, 56 (2013)
  2. Peng, L.L. Ma, Y.G. Zhang, M. Tan, Y. J.B. W. Yu, Mater. Res. Bull. 44, 1834 (2009)
  3. Li, W. Chen, H. Wang, Q. Ding, H. Hou, J. Zhang, L. Mi, Z. Zheng, Mater. Lett. 65, 1785 (2011)
  4. Lee, S.W. Yoon, E.J. Kim, J. Park, Nano. Lett. 7, 778 (2007)
  5. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakay- ama, M. Aono, Appl. Phys. Lett. 82, 3032 (2003)
  6. S. Xu, S.E. Huq, Mater. Sci. Eng. R 48, 47 (2005)
  7. Liu, X.L. Wang, B. Zhou, W.C. Law, A.N. Cartwright, M.T. Swihart, Adv. Funct. Mater. 23, 1256 (2013)
  8. Chen, Y. Zou, W. Qiu, F. Chen, M. Xu, M. Shi, H. Chen, (Thin Solid Films) 520, 5249 (2012)
  9. P. Liu, D. Xu, J.B. Liang, J.M. Shen, S.Y. Zhang, Y.T. Qian, J. Phys. Chem. B 109, 10699 (2005)
  10. B. Sigman, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee,B.A. Korgel, J. Am. Chem. Soc. 125, 16050 (2003)
  11. Mehdi Mousavi Kamazani ,  Seyed Amin Shobeir , Reza Rahmatolahzadeh , kourosh motevalli , Appl.phys.A(2017)123.314
  12. B. Chen, L. Chen, L.M. Wu, Chem. Eur. J 14, 11069 (2008)
  13. Li, H. Shen, J. Niu, S. Li, Y. Zhang, H. Wang, L.S. Li, J. Am. Chem. Soc. 132, 12778 (2010)
  14. Xiao, J. Chen, S.Z. Deng, N.S. Xu, S. Yang, J. Nanosci. Nano- technol. 8, 237 (2008)
  15. Wu, C. Pan, Z. Yao, Q. Zhao, Y. Xie, Cryst. Growth Des. 6, 1717 (2006)
  16. Han, K. Xu, Mater. Lett. 85, 4 (2012)
  17. F. Zhu, D.H. Fan, W.Z. Shen, Langmuir 24, 11131 (2008)
  18. Mousavi-Kamazani, M. Salavati-Niasari, M. Sadeghinia, Superlattic. Microst. 63, 248 (2013)
  19. Gorai, D. Ganguli, S. Chaudhuri, 59, 826 (2005)
  20. Amiri, M. Salavati-Niasari, M. Sabet, D. Ghanbari, Mater. Sci. Semicond. Process. 16, 1485 (2013)
  21. Sabet, M. Salavati-Niasari, D. Ghanbari, O. Amiri, M. Yousefi, Mater. Sci. Semicond. Process. 16, 696 (2013)
  • Receive Date: 12 February 2023
  • Revise Date: 18 February 2023
  • Accept Date: 23 February 2023