A Comprehensive Survey on Control Strategies of Distributed Generation Power Systems – A Review

Document Type : Original Article


Departement of Electrical Engineering, Islamic Azad University, Tehran, Iran


The proper control method plays a keyrole to ensure for the integration  RES  into  the  DGPSs  to  achieve  the  highest  system  reliability  and  system  efficiency. Many types of control strategies have been investigated with or without phase locked loops (PLLs) under  balanced, unbalanced and harmonic  conditions  in the  literature. Unbalanced grid disturbances cause overcurrent and overvoltage. Meanwhile, negative sequences lead to serious oscillations on power, current and voltage signals. The aim of this paper is to provide a comprehensive review on  various control strategies and PNS extractors for three-phase in verter interfaced DGPS under balanced and unbalanced grid conditions. A comparative analysis for recent PNS extractors has been carried out to produce the signals required for the RCG.High energy demand, low cost requirements and higher reliability requirements increase the importance of distributed generation power systems (DGPSs). The large capacity DGPSs requires high performance control algorithms and synchronization techniques based positive-negative sequence (PNS) extractors tofulfil system reliability and power quality requirements under not only during normal operating conditions, but also under unbalanced grid conditions. The power quality problems caused by voltage unbalances, voltage sag/swell, voltage fluctuations, phase faults and harmonic distortions have critical influences on control of power converter devices interfaced DGPSs.


[1]        Järventausta, P.,  Repo, S.,  Rautiainen, A.,  & Partanen, J. (2010). Smart grid power sys- 
tem control in distributed generation environment. Annual Reviews in Control,34( 2), 277–286. 
        [2]      Menniti, D., Picardi, C., Pinnarelli, A., & Sgrò, D. (2010). Application of a suitable control strategy for grid-connected inverters to the power management of a Microgrid. Distributed Generation,  1414–1419.  https://doi.org/10.1109/SPEEDHAM.2008.4581283.  InTech.
[3]        Toledo, O. M., Oliveira Filho, D., & Diniz, A. S. A. C. (2010). Distributed photovoltaic 
generation and energy storage systems: A review. Renewable and Sustainable Energy Reviews, 14( 1), 506–511.  https://doi.org/10.1016/j.rser.20 09.08.0 07. 
        [4]      Allan, G., Eromenko, I., Gilmartin, M., Kockar, I., & McGregor, P. (2015). The economics of distributed energy generation: A literature review. Renewable and Sustainable Energy Reviews, 42,  543–556. https://doi.org/10.1016/j.rser.2014.07.064.
[5]        Cao, Y., Wang, X., Li, Y., Tan, Y., Xing, J., & Fan, R. (2016). A comprehensive study on 
low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China. Renewable and Sustainable Energy Reviews, 53,  766–778. https://doi.org/10.1016/j.rser.2015.09.008.  
        [6]      Khamis, A., Shareef, H., Bizkevelci, E., & Khatib, T. (2013). A review of islanding detection techniques for renewable distributed generation systems. Renewable and Sustainable Energy Reviews, 28,  4 83–4 93. https://doi.org/10.1016/j.rser.2013. 08.025. 
[7]        Hu, J., Zhu, J., & Dorrell, D. G. (2013). Model predictive control of inverters for both 
islanded and grid-connected operations in renewable power generations. IET Renewable Power Generation, 8( 3), 240–248. https://doi.org/10.1049/iet-rpg.2013. 0078.  
[8]        in, P., & Li, Y. (2016). Optimized secondary control for distributed generation under 
unbalanced conditions. Energy Procedia, 88,  349–355. https://doi.org/10.1016/j. egypro.2016.06.137.
[9]        Mehrasa,  M.,  Pouresmaeil,  E.,  Sepehr,  A.,  Pournazarian,  B.,  Marzband,  M.,  & 
Catalão, J. P. (2019). Control technique for the operation of grid-tied converters with high penetration of renewable energy resources. Electric Power Systems Research, 166,  18–28. https://doi.org/10.1016/j.epsr.2018.09.015.  
[10]      Chatterjee, A., Mohanty, K., Kommukuri, V. S., & Thakre, K. (2017). Power quality 
enhancement of single phase grid tied inverters with model predictive current controller. Journal of Renewable and Sustainable Energy, 9( 1), 1–17. https://doi. org/10.1063/1.4973714.
[11]      Golestan, S., Guerrero, J. M., & Vasquez, J. C. (2017a). Three-phase PLLs: A review of 
recent advances. IEEE Transactions on Power Electronics, 32( 3), 1894–1907. 
[12]      Du, X., Wu, Y., Gu, S., Tai, H. M., Sun, P., & Ji, Y. (2016). Power oscillation analysis 
and control of three-phase grid-connected voltage source converters under unbalanced grid faults. IET Power Electronics, 9( 11), 2162–2173. https://doi.org/10.1049/iet-pel.2015.0804. 
[13]      Jin, P., Li, Y., Li, G., Chen, Z., & Zhai, X. (2017). Optimized hierarchical power oscillations control for distributed generation under unbalanced conditions. Applied 
Energy, 194,  343–352. https://doi.org/10.1016/j.apenergy.2016.06.075.
[14]      Chilipi, R., Al Sayari, N., Al Hosani, K., & Beig, A. R. (2016). Control scheme for gridtied distributed generation inverter under unbalanced and distorted utility conditions with power quality ancillary services. IET Renewable Power Generation,10( 2), 140–149. https://doi.org/10.1049/iet-rpg.2015.0095.  
[15]      Sarıbulut, L. (2016). A novel average filter based phase-locked loop for FACTS devices. Electric Power Systems Research, 136,  289–297. https://doi.org/10.1016/j.epsr.2016.02.025.
[17]      Rodríguez, P., Luna, A., Candela, I., Mujal, R., Teodorescu, R., & Blaabjerg, F. (2011). 
Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Transactions on Industrial Electronics,58( 1), 127–138. https://doi.org/10.1109/TIE.2010.2042420.
[18]      Mehmet Emin Meral, D. Çelík A comprehensive survey on control strategies of distributed generation power systems under normal and abnormal conditions, www.elsevier.com/locate/arcontrol
[19]       Parvez, M., Elias, M. F. M., Rahim, N. A., & Osman, N. (2016). Current control techniques for three-phase grid interconnection of renewable power generation sys- tems: A review. Solar Energy, 135,  29–42. https://doi.org/10.1016/j.solener.2016. 05.029. 
[20]      Guerrero-Rodríguez,  N.  F.,  Rey-Boué,  A.  B.,  Bueno,  E.  J.,  Ortiz,  O.,  &  ReyesArchundia, E. (2017). Synchronization algorithms for grid-connected renewable 
systems: Overview, tests and comparative analysis. Renewable and Sustainable Energy Reviews, 75,  629–643. https://doi.org/10.1016/j.rser.2016.11.038. 
[21]      Rezaei, M. M., & Soltani, J. (2015). A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions. International Journal of Electrical Power & Energy Systems, 71,  68–76. https://doi.org/10.1016/j.ijepes. 
[22]      Cao, Y., Wang, X., Li, Y., Tan, Y., Xing, J., & Fan, R. (2016). A comprehensive study on 
low-carbon impact of distributed generations on regional power grids: A case 
of Jiangxi provincial power grid in China. Renewable and Sustainable Energy Re- 
views, 53,  766–778. https://doi.org/10.1016/j.rser.2015.09.008.
[23]       Teke, A., Yıldırım, H. B., & Çelík, Ö(2015). Evaluation and performance comparison 
of different models for the estimation of solar radiation. Renewable and Sustainable Energy Reviews, 50,  1097–1107. https://doi.org/10.1016/j.rser.2015.05.049.  
[24]      Shahnia, F., Majumder, R., Ghosh, A., Ledwich, G., & Zare, F. (2010). Operation and 
control of a hybrid microgrid containing unbalanced and nonlinear loads. Elec-tric Power Systems Research, 80( 8), 954–965. https://doi.org/10.1016/j.epsr.2010. 01.005.  
[25]      Hasan, N. S., Hassan, M. Y., Majid, M. S., & Rahman, H. A. (2013). Review of storage 
schemes for wind energy systems. Renewable and Sustainable Energy Reviews, 21,  
237–247. https://doi.org/10.1016/j.rser.2012.12.028.
[26]      I˙nci, M.,  Bayindir, K. C.,  & Tumay, M. (2016a). A novel method improvement for de- 
tection of voltage problems in dynamic voltage restorers. Journal of The Faculty 
Of Engineering and Architecture of Gazi University, 31( 4), 997–1006.
[27]      Meral, M. E., & Çelík, D. (2018a). Benchmarking simulation and theory of various 
PLLs produce orthogonal signals under abnormal electric grid conditions. Electrical Engineering, 100( 3), 1805–1817. https://doi.org/10.10 07/s0 0202- 017- 0660-x.
[28]      Li, Y., Wang, D., Han, W., Tan, S., & Guo, X. (2016b). Performance improvement of 
quasi-type-1 PLL by using a complex notch filter. IEEE Access, 4,  6272–6282. 
[29]      Lubura, S., Šoja, M., Lale, S., Ristovic´ , M., & Ikic´ , M. (2015). Adaptive delay bank filter for selective elimination of harmonics in SRF-PLL structures. Environment and Electrical Engineering (EEEIC),  308–312. https://doi.org/10.1109/EEEIC.2015. 
Volume 1, Issue 2 - Serial Number 2
December 2020
Pages 161-175
  • Receive Date: 24 September 2023
  • Accept Date: 24 September 2023