A Review of Kalina Cycle

Document Type : Original Article


Department of Mechanical and production Engineering, Islamic University of Technology, Board Bazar, Gazipur 1704, Dhaka, Bangladesh


This paper illustrates a review research of the Kalina Cycle, including an explanation of Kalina Cycle and a simplified Kalina Cycle, a comparison of the Rankine and Kalina Cycles, an overview of the thermodynamics analysis of  Kalina Cycle, the different Kalina systems and their various implementations. In addition, various correlations are investigated and explored for the measurement of the thermodynamic properties of NH3-H2O mixtures. The concept of low grade heat is discussed. Some technical problems about NH3-H2O mixture, i.e. permanence, environmental effects, protection and erosion issues etc. are also addressed. This paper explores the study of various thermodynamic cycles for integrated power plants using low-grade heat sources. The different thermodynamic cycles, using low-grade heat sources for the combined power plant, are reviewed. Comparison of which cycle is best between Kalian and Rankine cycle in converting electrical energy from low temperature sources under different conditions using different research methods has been discussed.


[2]      A. I. Kalina, “COMBINED-CYCLE SYSTEM WITH NOVEL BOTTOMING CYCLE.,” J. Eng. Gas Turbines Power, vol. 106, no. 4, pp. 737–742, Oct. 1984.
[3]      A. I. Kalina, “Combined Cycle and Waste Heat Recovery Power Systems Based on a Novel Thermodynamic Energy Cycle Utilizing Low-Temperature Heat for Power Generation,” in 1983 Joint Power Generation Conference: GT Papers, 1983.
[4]      P. Bombarda, C. M. Invernizzi, and C. Pietra, “Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles,” Appl. Therm. Eng., vol. 30, no. 2–3, pp. 212–219, Feb. 2010.
[5]      Y. M. Park and R. E. Sonntag, “A preliminary study of the kalina power cycle in connection with a combined cycle system,” Int. J. Energy Res., vol. 14, no. 2, pp. 153–162, 1990.
[6]      G. Wall, C.-C. Chuang, M. Ishida, R. A. Bajura, M. R. von Spakovsky, and E. S. Geskin Eds, “Exergy Study of the Kalina Cycle,” ASME.
[7]      A. Kalina, M. T.-P. Conference, and  undefined 1989, “The Kalina power cycles, A progress report,” Illinois Inst. Technol.
[8]      H. Micak, “An introduction to the Kalina cycle,” 1996.
[9]      R. J.-I. Spectrum and  undefined 1986, “The promise of the Kalina cycle: Using an ammonia-water mixture, the Kalina steam cycle may permit thermal-mechanical-electrical energy conversion efficiencies of,” ieeexplore.ieee.org.
[10]    E. Thorin, “POWER CYCLES WITH AMMONIA-WATER MIXTURES AS WORKING FLUID Analysis of Different Applications and the Influence of Thermophysical Properties,” 2000.
[11]    Y. El-Sayed, M. T.-A. publication AES, and  undefined 1985, “A theoretical comparison of the Rankine and Kalina cycles.”
[12]    M. Jonsson, “Advanced Power Cycles with Mixtures as the Working Fluid,” 2003.
[13]    P. Valdimarsson, S. Ing, and L. Eliasson, “Factors influencing the economics of the Kalina power cycle and situations of superior performance,” 2003.
[14]    Z. Guzovi, D. Lon Car, and N. Ferdelji, “Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy,” Energy, vol. 35, pp. 3429–3440, 2010.
[15]    M. Yari, A. Mehr, V. Zare, S. Mahmoudi, M. R.- Energy, and  undefined 2015, “Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source,” Elsevier.
[16]    Z. Zhang, Z. Guo, Y. Chen, J. Wu, and J. Hua, “Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle,” Energy Convers. Manag., vol. 92, pp. 517–522, 2015.
[17]    H. M.-T.-G. Resources and  undefined 2002, “Kalina cycle® concepts for low temperature geothermal,” … The Geotherm. Resour. Counc.
[18]    U. Desideri, G. B.-E. C. and Management, and  undefined 1997, “Study of possible optimisation criteria for geothermal power plants,” Elsevier.
[19]    H. Leibowitz, H. M.- Transactions, and  undefined 1999, “Design of a 2MW Kalina cycle binary module for installation in Husavik, Iceland,” … The Geotherm. Resour. Counc.
[20]    C. Marston and M. Hyre, “Gas turbine bottoming cycles: triple-pressure steam versus Kalina,” 1995.
[21]    P. K. Nag and A. V. S. S. K. S. Gupta, “Exergy analysis of the kalina cycle,” Appl. Therm. Eng., vol. 18, no. 6, pp. 427–439, Mar. 1998.
[22]    J. A. Borgert and J. A. Velásquez, “Exergoeconomic optimisation of a Kalina cycle for power generation,” Int. J. Exergy, vol. 1, no. 1, pp. 18–28, 2004.
[23]    † Nasruddin, R. Usvika, M. Rifaldi, and A. Noor, “Energy and exergy analysis of kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation,” J. Mech. Sci. Technol., vol. 23, pp. 1871–1876, 2009.
[24]    O. A.-I. journal of thermal sciences and  undefined 2010, “Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina cycle: Simav case study,” Elsevier.
[25]    R. Dipippo, “Second Law assessment of binary plants generating power from low-temperature geothermal fluids,” Geothermics, vol. 33, pp. 565–586, 2004.
[26]    R. Murugan, P. S.-I. J. of, and  undefined 2008, “Thermodynamic Analysis of Rankine-Kalina Combined Cycle.,” search.ebscohost.com.
[27]    C. H. Marston, “Parametric analysis of the Kalina Cycle,” J. Eng. Gas Turbines Power, vol. 112, no. 1, pp. 107–116, Jan. 1990.
[28]    M. B. Original Citation Ibrahim and R. M. Kovach, “A Kalina Cycle Application for Power Generation,” Energy, vol. 18, no. 9, pp. 961–969, 1993.
[29]    X. Zhang, M. He, and Y. Zhang, “A review of research on the Kalina cycle,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7. pp. 5309–5318, Sep-2012.
[30]    “The performance of the Kalina cycle system 11 (KCS-11) with low-temperature heat sources,” 2007.
[31]    R. S. Murugan and P. M. V Subbarao, “Thermodynamic Analysis of Rankine-Kalina Combined Cycle,” 2008.
[32]    S. Ogriseck, “Integration of Kalina Cycle in a Combined Heat and Power Plant, A Case Study,” Elsevier.
[33]    H. U.-N. K. G. R. (B) and  undefined 1994, “Performance Analysis of OTEC System Using Kalina Cycle-Thermodynamic Characteristics of Cycle,” ci.nii.ac.jp.
[34]    Y. Zhang, M. He, Z. Jia, and X. Liu, “First law-based thermodynamic analysis on Kalina cycle,” Front. Energy Power Eng. China, vol. 2, no. 2, pp. 145–151, Jun. 2008.
[35]    E. D. Rogdakis, “Thermodynamic analysis, parametric study and optimum operation of the kalina cycle,” Int. J. Energy Res., vol. 20, no. 4, pp. 359–370, 1996.
[37]    M. Ishida, D. Z.-C. & chemical engineering, and  undefined 1986, “Graphic exergy analysis of chemical process systems by a graphic simulator, GSCHEMER,” Elsevier.
[38]    M. Ishida, D. Zheng, T. A.- Energy, and  undefined 1987, “Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis,” Elsevier.
[39]    M. Ishida and K. Kawamura, “Energy and Exergy Analysis of a Chemical Process System with Distributed Parameters Based on the Enthalpy-Direction Factor Diagram,” Ind. Eng. Chem. Process Des. Dev., vol. 21, no. 4, pp. 690–695, Oct. 1982.
[40]    A. Kalina, M. Tribus, Y. E.-S.-A. paper, and  undefined 1986, “A Theoretical Approach to the Thermophysical Properties of Two-Miscible-Component Mixtures For the Purpose of Power-Cycle Analysis.”
[41]    J. Wang, Y. Dai, L. G.-A. Energy, and  undefined 2009, “Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry,” Elsevier.
[42]    M. D. Rumminger, R. W. Dibble, A. E. Lutz, and A. S. Yoshimura, “An integrated analysis of the kalina cycle in combined cycles,” in Intersociety Energy Conversion Engineering Conference, 1994, 1994, pp. 974–979.
[43]    M. M.-I. I. A. Magazine and  undefined 2006, “Cementing Kalina cycle effectiveness,” ieeexplore.ieee.org.
[44]    M. M.-C. I. T. C. Record and  undefined 2007, “Ammonia-water based thermal conversion technology: Applications in waste heat recovery for the cement industry,” ieeexplore.ieee.org.
[45]    M. M.- Proceedings and  undefined 2001, “Commercialization of the Kalina Cycle for Power Generation and its Potential Impact on CO2 Emissions.”
[46]    R. M. Enick, G. P. Donahey, and M. Holsinger, “Modeling the high-pressure ammonia-water system with WATAM and the Peng-Robinson equation of state for kalina cycle studies,” Ind. Eng. Chem. Res., vol. 37, no. 5, pp. 1644–1650, 1998.
[47]    Z. Duan, N. Møller, J. W.-J. of solution chemistry, and  undefined 1996, “Equation of state for the NH3−H2O system,” Springer.
[48]    B. Ziegler, C. T.-I. J. of refrigeration, and  undefined 1984, “Equation of state for ammonia-water mixtures,” Elsevier.
[49]    T. J. Edwards, J. Newman, and J. M. Prausnltz, “Thermodynamics of Vapor-Liquid Equilibria for the Ammonia-Water System,” Ind. Eng. Chem. Fundam., vol. 17, no. 4, pp. 264–269, 1978.
[50]    K. Tochigi, K. Kurihara, T. Satou, K. K.-T. J. of supercritical fluids, and  undefined 1998, “Prediction of phase equilibria for the systems containing ammonia using PRASOG,” Elsevier.
[51]    F. Xu and D. Yogi Goswami, “Thermodynamic properties of ammonia-water mixtures for power-cycle applications,” 1999.
[52]    S. S. Stecco and U. Desideri, “m A Thermodynamic Analysis of the Kalina Cycles: Comparisons, Problems and Perspectives,” 1989.
[53]    “BarhoumiM,SnoussiA,EzzineNB,MejbriK,BellagiA.Modelling... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102.&q=BarhoumiM,SnoussiA,EzzineNB,MejbriK,BellagiA.Modelling+Of+The+thermodynamic+properties+of+theammonia–watermixture.International+Journal+ofRefrigeration2004%3B27:271–83. [Accessed: 10-Sep-2020].
[54]    “El-SayedYM.Tribus.Thermodynamicpropertiesofwater–ammoni... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=El-SayedYM.Tribus.Thermodynamicpropertiesofwater–ammoniamix-+tures+theoreticalimplementationforuseinpowercyclesanalysis.ASME+Paper+AES%2CAmericanSocietyofMechanicalEngineers1985%3B1%3A89–95.&btnG=. [Accessed: 10-Sep-2020].
[55]    “MejbriK,BellagiA.Modelling Of Thermodynamic Propertiesoft... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=MejbriK,BellagiA.Modelling+Of+Thermodynamic+Propertiesofthewater–+ammonia+mixturebythreedifferentapproaches.InternationalJournalof+Refrigeration+2006%3B29:211–8. [Accessed: 10-Sep-2020].
[56]    “AmerHT,MichelF,Olivier.Thermodynamic Properties Of... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=AmerHT,MichelF,Olivier.Thermodynamic+Properties+Of+Ammonia–water+mixtures.+internationalcongressofrefrigeration.Washington:ICR%3B2003+113. [Accessed: 10-Sep-2020].
[57]    D. Y. Peng and D. B. Robinson, “TWO- AND THREE-PHASE EQUILIBRIUM CALCULATIONS FOR COAL GASIFICATION AND RELATED PROCESSES.,” in ACS Symposium Series, 1980, vol. 133, pp. 393–414.
[58]    “KalinaA,TribusM,El-SayedA.Theoreticalapproachtothethermop... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=KalinaA,TribusM,El-SayedA.Theoreticalapproachtothethermophy-+sical+properties+of+two-miscible-component+mixturesforthepurposeof+power-cycle+analysis.ASMEPaper,AmericanSocietyofMechanicalEngi-+neers,+WA/HT1986%3B86:54. [Accessed: 10-Sep-2020].
[59]    A. Nowarski and D. G. Friend, “Application of the extended corresponding states method to the calculation of the ammonia-water mixture thermodynamic surface,” Int. J. Thermophys., vol. 19, no. 4 SPEC.ISS., pp. 1133–1142, Jul. 1998.
[60]    S. Skogestad, “EXPERIENCE IN NORSK HYDRO WITH CUBIC EQUATIONS OF STATE,” Elsevier Science Publishers B.V, 1983.
[61]    H. Renon, J. Guillevic, D. Richon, … J. B.-I. journal of, and  undefined 1986, “A cubic equation of state representation of ammonia—water vapour—liquid equilibrium data,” Elsevier.
[62]    “StrykeR,VeraJH.AnimprovedPeng–Robinsonequationofstatefo... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102.&q=StrykeR,VeraJH.AnimprovedPeng–Robinsonequationofstateforpure+compounds+and+mixtures.Canadian+Journal+of+Chemical+Engineering+1986%3B64:323–33. [Accessed: 10-Sep-2020].
[63]    “SturnfieldBE,MatherneJL.Modelingofacomplexpolarsystemwith... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102.&q=SturnfieldBE,MatherneJL.Modelingofacomplexpolarsystemwitha+modified+soave–redlich–kwong+equation.Chemical+Engineering+Communication+1989%3B84:81–95. [Accessed: 10-Sep-2020].
[64]    “HuangH,NewS.Mixingruleforthe Patel–Tejaequationofstate,... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=HuangH,NewS.Mixingruleforthe+Patel–Tejaequationofstate,study+of+vapor–liquid+equilibria.Fluid+Phase+Equilibria+1990%3B58(1–2):93–115. [Accessed: 10-Sep-2020].
[65]    “SmolenTM,ManleyDB,PolingBE.Vapor–liquidequilibriumdataf... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=El-Sayed+YM%2C+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1%2C+97–102.&q=SmolenTM%2CManleyDB%2CPolingBE.Vapor–liquidequilibriumdataforthe+NH3–H2O+systemanditsdescriptionwithamodifiedequationofstate.+Journal+ofChemicalandEngineeringData1991%3B36%3A202–8.&btnG=. [Accessed: 10-Sep-2020].
[66]    J. V.-F. P. Equilibria and  undefined 1983, “Equations of state-reworking the old forms,” Elsevier.
[67]    V. Abovsky, “Thermodynamics of ammoniawater mixture HglgPHAS[ HIUlUDRIA Thermodynamics of ammonia-water mixture,” Fluid Phase Equilib., vol. 116, pp. 170–176, 1996.
[68]    R. Enick, H. Mcllvried, T. Gale, J. K.- Proceedings, and  undefined 1997, “The modeling of LEBS Kalina power cycles.”
[69]    J. Rainwater and R. Tillner-Roth, “Critical Region Vapor-Liquid Equilibrium Model of Ammonia-Water,” 1999.
[70]    “Tillner-RothR,FriendDGA.Helmholtzfreeenergyformulation... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102.&q=Tillner-RothR,FriendDGA.Helmholtzfreeenergyformulation+Of+The+thermodynamic+properties+of+themixture%7Bwaterþammonia%7D.+Journal+Of+Physical+andChemicalReferenceData1998%3B27(1b):63–9. [Accessed: 10-Sep-2020].
[71]    J. Patek and J. Klomfar, “UTTERWORTH I N E M A N N 0140-7007(95)00006-2 Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system,” 1995.
[72]    P. Jain, G. G.-A. JOURNAL, and  undefined 1971, “Equilibrium property data equations for aqua-ammonia mixtures.”
[73]    E. Thorin, C. Dejfors, and G. Svedberg, “Thermodynamic properties of ammonia-water mixtures for power cycles,” Int. J. Thermophys., vol. 19, no. 2 SPEC.ISS., pp. 501–510, Mar. 1998.
[74]    E. Thorin, “Comparison of correlations for predicting thermodynamic properties of ammonia-water mixtures,” Int. J. Thermophys., vol. 21, no. 4, pp. 853–870, Jul. 2000.
[75]    A. Kalina, “Novel Power Cycle for Combined-Cycle Systems and Utility Power Plants,” 1986.
[76]    “KaliniAI,TribusM.TheKalinaPowerCycles,Progress Report.Pro... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102.&q=KaliniAI,TribusM.TheKalinaPowerCycles,Progress+Report.Proceedings+of+the+American+PowerConference1989%3B5–21. [Accessed: 10-Sep-2020].
[77]    B. Milenko Jacimovic and S. Genic, “Application of modified Kalina cycle in biomass chp plants Heat exchangers View project Improvement of system for process and storage heating in plant for margarine production View project,” Artic. Int. J. Energy Res., 2020.
[78]    H. M. Hettiarachchi and M. Golubovic, “The performance of the Kalina cycle system 11 (KCS-11) with low-temperature heat sources,” 2007.
[79]    X. Lu, J. Deans, and A. Watson, “Analysis of the Thermodynamic Performance of Kalina Cycle System 11 (KCS11) for Geothermal Power Plant: Comparison With Kawerau ORMAT Binary Plant ES2009-90165 ANALYSIS OF THE THERMODYNAMIC PERFORMANCE OF KALINA CYCLE SYSTEM 11 (KCS11) FOR GEOTHERMAL POWER PLANT-COMPARISON WITH KAWERAU ORMAT BINARY PLANT,” asmedigitalcollection.asme.org, 2009.
[80]    H. Hjartarson, H. Energy, R. Maack, and S. Jóhannesson, “Húsavík Energy Multiple use of geothermal energy Thermie project nr. GE 321 / 98 / IS / DK.”
[81]    H. M.-T.-G. Resources and  undefined 2002, “Kalina cycle® concepts for low temperature geothermal,” Davis, CA; Geothermal ….
[82]    “Luti Hans,Asea-Brown-Boveri Inc.Private Communication - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&as_ylo=2020&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102.&q=Luti+Hans,Asea-Brown-Boveri+Inc.Private+Communication. [Accessed: 10-Sep-2020].
[83]    “BannisterRL,SilvestriJrGJ,HizumeA,FujikawaT.High-temperat... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&as_ylo=2020&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102.&q=BannisterRL,SilvestriJrGJ,HizumeA,FujikawaT.High-temperature+supercritical+steam+turbines.MechanicalEngineeringFebruary1987:60. [Accessed: 10-Sep-2020].
[84]    “KalinaAI,LeibowitzH.ApplicationoftheKalinacycletechnology... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&as_ylo=2020&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102.&q=KalinaAI,LeibowitzH.ApplicationoftheKalinacycletechnologyto+geothermal+power+generation.GeothermalResearchCouncilannualmeet-+ing,+SantaRosa,CA,October+1989. [Accessed: 10-Sep-2020].
[85]    Z. Liu, N. Xie, and S. Yang, “Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat,” Energy Convers. Manag., vol. 205, p. 112370, Feb. 2020.
[86]    O. K. Singh, “Application of Kalina cycle for augmenting performance of bagasse-fired cogeneration plant of sugar industry,” Fuel, vol. 267, p. 117176, May 2020.
[87]    W. Qu, H. Hong, B. Su, S. Tang, and H. Jin, “A concentrating photovoltaic/Kalina cycle coupled with absorption chiller,” Appl. Energy, vol. 224, pp. 481–493, Aug. 2018.
[88]    M. Jonsson, J. Y.- Energy, and  undefined 2001, “Ammonia–water bottoming cycles: a comparison between gas engines and gas diesel engines as prime movers,” Elsevier.
[89]    H. Leibowitz, M. M.-P. engineering, and  undefined 1997, “First Kalina combined-cycle plant tested successfully,” go.gale.com.
[90]    “WhittakerP.CorrosionintheKalinacycle,Aninvestigationintoc... - Google Scholar.” [Online]. Available: https://scholar.google.com/scholar?q=WhittakerP.CorrosionintheKalinacycle,Aninvestigationintocorrosion+problems+attheKalinacyclegeothermalpowerplantinHusavik,Iceland+(Master+thesis).AMaster’sthesisdoneatRES%7CtheSchoolforRenewable+Energy+ScienceinaffiliationwithUniversityofIceland%26theUniversi&hl=en&as_sdt=0,5&scioq=El-Sayed+YM,+Tribus+MA.+Theoretical+comparison+of+the+Rankine+and+Kalina+cycles.+1985ASME+publication+AES-Vol.+1,+97–102. [Accessed: 11-Sep-2020].
Volume 1, Issue 1 - Serial Number 1
September 2020
Pages 77-107
  • Receive Date: 30 September 2023
  • Accept Date: 30 September 2023