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ABSTRACT 

In this paper, an analytical solution of the energy equation and momentum (Navier-

Stokes) equation in the convection heat transfer over a flat plate has been carried out for an 

incompressible flow. The equations governing the problem are with multivariate partial 

derivatives which have been initially converted to non-dimensional equations by applying 

dimensionless parameters. Considering the linearity of the dimensionless energy equation and 

the nonlinearity of the dimensionless momentum equation, two solving methods have been 

considered for solving the two equations. The energy equation has been solved by direct 

method and applying the conditions governing the problem, and the momentum (Navier-

Stokes) equation has also been solved by the Homotopy Perturbation Method (HPM) using the 

initial guess based on the boundary conditions governing the problem. Finally, the results of 

the analytic solution of the governing equations have been presented in the form of tables and 

graphs including temperature profiles, flow function, velocity and skin friction coefficient and 

then it has been investigated the effects of changing the non-dimensional values such as η, 𝑎 

and Pr on the temperature and heat transfer profiles. 

Keywords: Analytical solution, HPM, Thermal boundary layer, Convection boundary layer, 

Flat plate 

1. INTRODUCTION

Heat transfer is always very important in industry so that many researchers have 

conducted many studies in this field. The discussion of the equations governing heat transfer 

at various surfaces such as vertical, horizontal, sloping flat surfaces, and spherical and 

cylindrical objects, blades and fins and etc. in the industry, refineries and power plants has 

attracted the attention of the scientists. Accordingly, the analytical solution of the equations 

governing heat transfer has been considered in this study in which the linear part of the 
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governing equations (energy equation) has been solved by the direct method and their non-

linear part (momentum equation) has been done by the Homotopy Perturbation Method (HPM) 

and the extensive researches have been conducted in this field around the world.  

Raju et al. (2014) have conducted the analytical solution of MHD1 of free convective of 

dissipative boundary layer flow past a porous vertical surface in the presence of thermal 

radiation, chemical reaction and constant suction [1]. In 2014, Nofel has studied the application 

of the Homotopy Perturbation Method to nonlinear heat conduction [2]. Haq and his colleague 

(2012) have considered the solution of strongly nonlinear ordinary differential equations 

arising in heat transfer with Optimal Homotopy Asymptotic Method (OHAM) [3]. Raftari and 

his colleague (2012) have studied Homotopy analysis method (HAM) for MHD viscoelastic 

fluid flow and heat transfer in a channel with a stretching wall [4]. In 2012, Yildirim and his 

colleagues have studied the analytical solution of MHD stagnation point flow in porous media 

by means of the Homotopy Perturbation Method [5]. Rashidi and his colleague (2011) have 

considerd the analytic approximate solutions for heat transfer of a micropolar fluid through a 

porous medium with radiation [6]. In 2010, Rashidi and his colleague have examined the 

analytic approximate solutions for unsteady boundary-layer flow and heat transfer due to a 

stretching sheet by Homotopy analysis method [7]. In 2008, Sajid and his colleague have 

performed a comparison of HAM and HPM methods in nonlinear heat conduction and 

convection equations [8]. Ganji et al. (2007) have solved some nonlinear heat transfer equations 

by three approximate methods including HPM, VIM 2, FEM 3 [9].  

Ganji and his colleague (2007) have studied Homotopy perturbation and variational 

iteration methods to nonlinear heat transfer and porous media equations [10]. Rajabi (2007) 

has studied Homotopy perturbation method for fin efficiency of convective straight fins with 

temperature-dependent thermal conductivity [11]. Sajid et al. (2007) have done the comparison 

between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving 

belt [12]. Hayat and his colleague (2007) have examined analytic solution for thin films flow 

of a fourth grade fluid down a vertical cylinder by HAM method [13]. Abbasbandy (2006) has 

applied Homotopy analysis method to nonlinear equations arising in heat transfer [14]. Ganji 

and his colleague (2006) have assessed Homotopy perturbation and perturbation methods in 

heat radiation equations [15].  

When the fluid with a specified temperature begins to move over a solid surface whose 

temperature is different from that of the fluid, convection heat transfer occurs due to the 

difference in temperature between solid surface and fluid. If the temperature difference 

between the moving fluid and the solid surface is high, the thermal boundary layer develops, 

and the fluid particles in contact with the surface reach a thermal equilibrium with the surface. 

The fluid in contact with the surface exchanges energy with the adjacent fluid and then it leads 

to the creation of a temperature gradient and this process continues with the formation of a 

temperature profile. Scientists and researchers have done a variety of research in this regard. 

For example, yacob et al. (2011) have examined boundary layer flow past a 

stretching/shrinking surface beneath    an external uniform shear flow with a convective surface 

boundary condition in a nanofluid. In this study, the fluid flow is steady and the research has 

also been solved numerically using the Runge-Kutta method of Order 4 [16]. Makinde (2011) 

has studied the similarity solution for natural convection from a moving vertical plate with 

internal heat generation and a convective boundary condition [17]. Ishak (2010) has studied 

the similarity solutions for flow and heat transfer over a permeable surface with convective 

boundary condition [18]. Aziz (2009) has done a similarity solution for laminar thermal 
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boundary layer over a flat plate with a convection surface boundary condition. This research 

has been solved numerically using the Runge-Kutta method of Order 4 [19]. In this research, 

it has been considered the analytical solution of two equations, one momentum (Navier-Stokes) 

equation and another energy equation. The heat transfer is a forced convective and the desired 

fluid is steady. Homotopy perturbation (HPM) and direct methods have been used to solve the 

momentum (Navier-Stokes) equation and energy equation, respectively. At the end, the results 

of the solution are displayed in the form of tables and graphs. 

 

2. Statement of the problem 

In this problem, there is an incompressible two-dimensional steady flow over a flat plate. 

It is assumed that the desired flat plate is vertical, the thermal boundary layer is laminar and 

convective boundary condition is superficial. x and y axes have been considered in the direction 

of the plate and perpendicular to it, respectively. The cold fluid with temperature T∞ and 

constant velocity U∞ is moving over a horizontal flat plate with temperature Tf. Heat transfer 

takes place due to the difference in temperature between the plate and the fluid (Tf >T∞). 

According to the non-slip principle, when a fluid moves over the desired surface, a layer of 

fluid which is in contact with the solid surface, is motionless and we assume that its velocity is 

zero and hence the heat transfer in this thin layer takes place only as a conduction, so: q̇ c𝑜𝑛𝑑 

= q̇ c𝑜nv . Heat transfer in the higher layers occurs as convection and the fluid properties have 

been assumed constant. 

 

The equations governing the problem include three equations of continuity, momentum 

(Navier-Stokes) and energy that are as follows: 

 

Continuity equation:  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                            (1) 

 

Momentum (Navier-Stokes) equation: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2
                                                                                                                            (2) 

Energy equation:  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
                                                                                                                           (3) 

Fig. 1. Thermal boundary layer on the flat plate under the free stream U∞ , T∞ 
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Here, u and v are the speed components along x and y, respectively; T is temperature; ν 

is fluid kinematic viscosity (velocity penetration factor); and α is thermal diffusivity of the 

fluid. 

Speed and temperature boundary conditions are as follows: 

 
u(x, 0) = v(x, 0) = 0 
u(x, ∞) = U∞ 
T(x, ∞) = T∞ 
                                                                                                                                                 (4) 

Using dimensionless quantities, the equations with partial multivariate derivatives are 

converted to ordinary univariate differential equations. The dimensionless quantities are: 

η = y (
U∞

νx
)

1
2
 

f(η) =
ѱ

U∞√νx ∕ U∞

 

θ =
T − T∞

Tf − T∞
    

                                                                                                                                                (5) 

Here, η is independent variable, f is a variable dependent on the flow function ѱ, and θ 

is dimensionless temperature. Also, θ∞ is dimensionless temperature of fluid free flow and θf 

is dimensionless temperature of flat plate. 

After non-dimensionalization, momentum (Navier-Stocks) equation and energy 

equation will be became as follows: (therefore, we have momentum equation (2) and energy 

equation (3) as dimensionless ones as follows): 

 

2𝑓′′′ + 𝑓𝑓′′ = 0                                                                                                                                     (6) 

𝜃′′ +
1

2
𝑃𝑟𝑓𝜃′ = 0                                                                                                                                   (7) 

The boundary conditions for two equations (momentum and energy) in the non-

dimensional mode are: 

 

f(0) = f ′(0) = 0 

f ′(∞) = 1 

θ′(0) = −a[1 − θ(0)] 
θ(∞) = 0  
                                                                                                                                                 (8) 

 

 

3. Solving method 

 

The equations governing the problem were equations with partial multivariate 

derivatives which have been converted to the ordinary univariate differential equations with 

orders higher than one derivative through non-dimensionalization. Due to nonlinearity, the 

dimensionless momentum (Navier-Stokes) equation (6) cannot be solved by direct method as 

a linear equation, but equation (7), which is a linear equation, can be solved directly. Given the 

homogeneity of these two equations, two general solutions will be obtained.  

We will first solve the energy equation (7), which has a homogeneous boundary 

condition (9) and a non- homogeneous boundary condition (10).  
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θ(∞) = 0                                                                                                                                                 (9) 
θ′(0) = −a[1 − θ(0)]                                                                                                                        (10) 

In order to solve the above equations in a direct way, the following solutions are guessed 

for θ, θ′ and θ′′.  

θ = ⅇλη                                                                                                                                                   (11) 

θ′ = λⅇλη                                                                                                                                               (12) 

θ′′ = λ2ⅇλη                                                                                                                                            (13) 

By applying the solutions (11)-(13), the energy equation governing the problem (7) 

will become as follow:  

λ2ⅇλη +
1

2
Prf λⅇλη = 0                                                                                                                       (14) 

The energy equation (14) has two roots which one of them is zero and another is  

−
1

2
Prf.; according to two different roots and the use of a direct solving method, we have:  

θ = C1ⅇ(0)η + C2ⅇ(−
1
2

Prf)η                                                                                                                  (15) 

 By applying the boundary conditions governing the obtained energy equation, the 

constant quantities C1 and C2 are obtained as follows:  

C1 = 0                                                                                                                                                     (16) 

C2 =
a

1
2 Prf + a

                                                                                                                                      (17) 

Given the specified coefficients C1 and C2, the solution from the governing energy 

equation is as follows:  

θ =
a

1
2 Prf + a

ⅇ(−
1
2

Prf)η                                                                                                                        (18) 

  

By determining the solution from solving the energy equation, we try to solve the 

momentum (Navier-Stokes) equation.  

According to nonlinearity, the momentum (Navier-Stokes) equation cannot be solved as 

the previous method. Therefore, Homotopy Perturbation Method (HPM) can be used to solve 

equation (6).  

Homotopy Perturbation Method (HPM) is a method for solving nonlinear equations 

developed by J. H. He in 1999. This new method has high precision and convergence speed. 

This technique is frequently used in engineering science and it is a good alternative to the Forth 

Order Runge-Kutta method because of its simplicity and high speed in doing calculations.  

We assume that the nonlinear differential equation is as follows: 

 

A(u) − f(r) = 0, r ∈ Ω                                                                                                                        (19) 
And, the boundary condition of equation (19) is as follows: 

B (u,
∂u

∂n
) = 0, r ∈ Γ                                                                                                                            (20) 

B is a boundary operator and Γ is the boundary of the domain Ω. 

In equation (19), we have: 

A (u) =𝐿 (u) +N (u), where 𝐿 (u) and N (u) are equal to linear and nonlinear parts, 

respectively. Also, f(r) is known as an analytic function and A(u) is general differential 

operator. According to the Homotopy method, the Homotopy v(r, P): Ω × [0,1] → R can be 

formed in such a way that the Homotopy Perturbation equation is as follows: 

H(v, p) = (1 − P)[L(v) − L(u0)] + P[A(v) − f(r)] = 0                                                           (21) 
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In equation (21), P is known as Perturbation variable which has a numerical value 

between zero and one (P ∈ [0,1]). The results from equation (21) are expressed as follows: 

H(v, 0) = L(v) − L(u0) = 0                                                                                                             (22) 
H(v, 1) = A(v) − f(r) = 0                                                                                                                (23) 

According to the results from (22)-(23), if P changes from zero to one, v(r, P) converts 

from u0(r) to u(r).[2] 
The obtained solutions can be expressed as power series of P: 

v = v0 + Pv1 + P2v2 + ⋯                                                                                                                (24) 

Then, the approximate solution of equation (19) can be obtained with the following limit: 

u = lim
P→1

v = v0 + v1 + v2 + ⋯                                                                                                        (25) 

By replacing equation (6) in equation (21), equation (21) is expressed as follows: 
(1 − P)[2f ′′′ − L(u0)] + P[2f ′′′ + ff ′′] = 0                                                                                 (26) 

In equation (26), L(u0) is equal to initial guess which is equal to −2ⅇ−η in this study. 

we put the expression " f = f0 + Pf1"instead of " f " and extend the equation (26) based on the 

said assumptions and then arrange the sentences based on powers equal to P. 

For P0 mode: 

P0:  2f0
′′′ = −2ⅇ−η 

f0(0) = 0, f0
′(0) = 0, f0

′(∞) = 1 

                                                                                                                                              (27) 
For P1 mode: 

P1:  2f1
′′′ = +2ⅇ−η − f0f0

′′ 
f1(0) = 0, f1

′(0) = 0, f1
′(∞) = 0                                                                                                           (28) 

According to the specified boundary conditions, the solutions from equations (27) and 

(28) are equal to: 

f0 = ⅇ−η + η − 1                                                                                                                                  (29) 
f1 = 0.0625ⅇ−2η + 0.5ηⅇ−η − 0.375η − 0.0625                                                                        (30) 

After determining f0 and f1 from the above solutions, the equation " f " is expressed as 

follows:  

f(η) = f0(η) + f1(η)                                                                                                                           (31) 
 

4. Results and discussion 

 

In this section, we will examine the results of solving the momentum (Navier-Stokes) 

equation and the energy equation through tables and graphs.  

Considering the solution of the momentum (Navier-Stokes) equation by HPM method, 

the flow, velocity and skin friction graphs are displayed in terms of the variable η for the 

equation (6) as follows:  

 

 

 

 

 

 

 

 

 

http://globalpublisher.org/journals-1007/


 

 
 

International Journal of Smart Energy Technology and Environmental Engineering 

Volume 2, Issue 2, September 2023 

http://globalpublisher.org/journals-1007/  

 

 

 

www.globalpublisher.org   121 

Fig. 2. Flow graph in η 

 

 

Fig. 3. Velocity graph in η  
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Fig. 4. Skin friction graph in η  

 

Now, we review the tables and graphs related to the energy equation governing the 

problem using the specified momentum equations graphs. 

The energy equation governing the problem has a known general solution (18) in which 

the effective parameters include Prandtl number (Pr), the variable dependent on the flow 

function (f), the independent variable of the problem (η) and α, in which the parameter α is 

equal to:  

 

𝑎 =
ℎ𝑓

𝑘
√𝜈𝑥 ∕ 𝑈∞                                                                                                                                 (32) 

As seen in this relation, hf is equal to convection heat transfer factor and k is equal to 

conductive heat transfer factor.   

In the below tables, the numerical values of −θ′ (0), θ (0) have been given for three 

Prandtl numbers 0.1, 0.72 and 10 for different α values. 
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Table 1. Numerical values for Prandtl number 0.1 

 

 

Table 2. Numerical values for Prandtl number 0.72 
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Table 3.. Numerical values for Prandtl number 10 

 

 

In the above tables, the numerical value of θ (0) obtained from analytical solution has 

been compared with the value from numerical solution [19].  

We know that Prandtl number (Pr) is a dimensionless number that represents the ratio of 

velocity penetration factor to thermal penetration factor. This dimensionless number is of 

orders 1, 10 and 10-2 for gases, water and liquid metals, respectively. For liquid metals, Prandtl 

number is smaller than one. Therefore, the heat is released very quickly and the thermal 

boundary layer δt is thicker than the velocity boundary layer δ (Pr <<1, δ < δt). While, if the 

Prandtl number is much larger than one, the momentum is released much faster than heat and 

the thermal boundary layer δt is thinner than the velocity boundary layer δ (Pr >>1, δ > δt). 

 

Figures (5), (6) and (7) are the temperature graphs in terms of variable η for Prandtl 

numbers 0.1, 0.72 and 10, respectively.  
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Fig. 5. Temperature graph in terms of η for 𝑃𝑟=0.1 

 

Fig. 6. Temperature graph in terms of η for 𝑃𝑟=0.72 
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Fig. 7. Temperature graph in terms of η for 𝑃𝑟=10 

 

 

5. Conclusions 

 

Heat transfer equations including momentum (Navier-Stokes) equation and the energy 

equation have been analyzed through analytical solution. Below are the results of the analytical 

solution and its comparison with numerical solution.  

I- As η increases, the flow velocity is increased toward one. 

II- As η increases, skin friction coefficient is reduced sharply.  

III- As Prandtl number (Pr) increases from 0.1 to 10, the value of θ (0) for α=0.05 is 

reduced.  

IV- As Prandtl number (Pr) increases from 0.1 to 10, the value of θ (0) for α=20 is 

reduced 

V- As the value of α increases from 0.05 to 20, the value of θ (0) is increased. 

VI- The results obtained from the analytic solution in comparison with the numerical 

solution (fourth order Runge-Kutta) for the energy equation show that the 

numbers obtained from the analytical solution vary with the numbers resulting 

from the numerical solution in thousandth and ten thousandths. 
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6. Appendix: 

 

x                         vector in the direction of the plate 

y                         vector perpendicular to the plate 

u                         velocity component in the direction of the plate 

v                         velocity component perpendicular to the plate  

T∞                      Fluid temperature around the plate 

U∞                      constant speed fluid 

Tf                        the desired plate temperature  

T                         temperature  

ν                          velocity penetration factor  

α                         The thermal penetration factor 

η                         problem variable 

f                          dimensionless velocity factor 

θ                         dimensionless temperature  

Pr                        dimensionless Prandtl number 

P                         perturbation variable 

A (u)                   general differential operator 

L (u)                   linear part 

L (u0)                 initial guess 

N (u)                  nonlinear part 

F(r)                     analytical function 
B                        boundary operator 

hf                       convection heat transfer factor 

K                        conductive heat transfer factor 

δ                         velocity boundary layer 

δt                        thermal boundary layer 
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