Creating the applicability range of hydrodynamics in high energy collisions

Document Type : Original Article

Authors

Department of Mechanical Engineering, South Branch, Islamic Azad University, Tehran, Iran

Abstract

We simulate the spatio-temporal dynamics of high-energy collisions based on a microscopic kinetic description in the coherent-time approximation, to determine the applicability of an effective description in relativistic viscous hydrodynamics.
We find that hydrodynamics gives a quantitatively accurate description of the collective flow when the mean inverse Reynolds number 〖Re〗^(-1) is sufficiently small and the early pre-equilibrium state is specifically considered. has been From now on, we discuss the implications of our findings for the applicability or nonapplicability of hydrodynamics in proton-proton, proton-nucleus, and nucleus-light collisions.

Keywords

[1]   D. A.Teaney,Viscous hydrodynamics and the quark gluon plasma
[2]     H. Song, S. A. Bass, U. Heinz, T. Hirano, Phys. Rev. Lett. 106, 192301 (2011).
[3]     H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen,Phys.Rev(2011)
[4]    C. Gale, S. Jeon, and B. Schenke,INT.Phys. A 28 1340011 (2013)
[5]     U. Heinz and R. Snellings,Annu. Rev.Nucl. part.Sci.63,123 (2013)
[6]     M. Luzum and H. Petersen, J.Phys. G 41,063102 (2014.
[7]      S. Jeon and U. Heinz, Int J. Mod. Phys. E 24,1520010 (2015)
[8]      J. H. Putschke et al., arXiv:1903.07706
[9]    D. Everett et al. (JETSCAPE Collaboration), Phys. Rev. C 145
[10]     G. Nijs, W. van der Schee, Phys. Rev. C 103, 103, 054909 (2021)
[11]    B. B. Abelev et al. (ALICE Collaboration),  Phys. Rev. C 90                         
[12]     M. Aaboud et al. (ATLAS Collaboration), Eur. Phys. J.C
[13]     A. M. Sirunyan et al. (CMS Collaboration),  Phys. Rev. Lett. 120, 092301 (2018)
[14]     K. Dusling, W. Li, and B. Schenke,Int. J. Mod. Phys. E 25, 1630002 (2016)
[15]     C. Loizides, Nucl.Phys. A956, 200 (2016)
[16]     J. L. Nagle and W. A. Zajc, Annu. Rev. Nucl. Part. Sci. 68, 211 (2018).
[17]     J. Berges, K. Boguslavski,S.Schlichting, Phys. Rev. D 89, 114007 (2014).
[18]     J. Berges, K. Boguslavski, S. Schlichting, J. High Energy Phys. 05 (2014)
[19]     M. P. Heller and M. Spalinski, Phys. Rev. Lett. 115, 072501(2015).
[20]     M. Spaliński, Phys. Lett. B 776, 468 (2018).
[21]     M. Strickland, J. Noronha, and G. S. Denicol, Phys. Rev. D97, 036020 (2018).
[22]     M. Strickland, J. High Energy Phys. 12 (2018) 128.
[23]     M. Spaliński, Phys. Lett. B 784, 21 (2018).
[24]     G. Giacalone, A. Mazeliauskas, and S. Schlichting, Phys. Rev, 262301 (2019).
[25]     A. Kurkela, W.. A. Wiedemann, Phys. Rev.Lett. 124, 102301 (2020).
[26]     G. S. Denicol and J. Noronha, Phys. Rev. Lett. 124, 152301(2020).
[27]     D. Almaalol, A. Kurkela, Phys. Rev. Lett. 125, 122302 (2020).
[28]     M. P. Heller, R. Jefferson, M. Svensson, Phys. Rev. Lett. 125, 132301 (2020).
[29]      X. Du and S. Schlichting, Phys. Rev. Lett. 127, 122301 (2021).
[30]      J.-P. Blaizot and L. Yan, Phys. Rev. C 104, 055201 (2021).
[31]     C. Chattopadhyay, S. Jaiswal, L.,and S. Pal, Phys. Lett, 136820 (2022)           
[32]    X. Du, M. P. Heller, S. Schlichting, and V. Svensson, Phys. Rev, 014016 (2022).
[33]     G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha, and
[34]     M. Strickland, Phys. Rev. D 90, 125026 (2014).
[35]     A. Kurkela, U. A. Wiedemann, and B. Wu, Eur. Phys. J. C79, 965 (2019).
[36]     A. Kurkela, S. F. Taghavi, and B. Wu, Phys. Lett. B 135901 (2020).
[37]     V. E. Ambrus, S. Schlichting, and C. Werthmann, arXiv: 2211.14379.
[38]      V. E. Ambruş, S. Schlichting, and C. Werthmann, Phys. Rev. (2022).
[39]     N. Borghini, M. Borrell, N. Schlichting, Phys. Rev. C 107, 034905 (2023).
[40]      J. I. Kapusta, Phys. Rev. C 21, 1301 (1980).
[41]      H. Petersen, J. Steinheimer, M. Bleicher, J. Phys. G 36, 055104 (2009).
[42]       P. Huovinen and H. Petersen, Eur. Phys. J. A 48, 171 (2012).
[43]      I. Karpenko, P. Huovinen, and M. Bleicher, Comput. Phys..
[44]      I. Müller, Z. Phys. 198, 329 (1967).
[45]     W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).
[46]     H. Heiselberg and A.-M. Levy, Phys. Rev. C 59, 2716 (1999).
[47]     N. Borghini and C. Gombeaud, Eur. Phys. J. C 71, 1612 (2011).
[48]    P. Romatschke, Eur. Phys. J. C 78, 636 (2018).
[49]     A. Kurkela, U. A. Wiedemann, and B. Wu, Phys. (2018).
[50]     N. Borghini, S. Feld, and N. Kersting, Eur. Phys. J. C 78, 832 (2018).
[51]     A. Kurkela, A. Mazeliauskas, and R. Törnkvist, J. High (2016)
[52]     B. Bachmann, N. Borghini, N. Feld, and H. Roch, Phys. J. C 83, 114 (2023).
[53]     J. E. Bernhard, J. S. Moreland, and S. A. Bass, Phys. (2019)
[54]     J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[55]     J. Jankowski, S. Kamata, M. Martinez, Phys. Rev. D 104, 074012 (2021). See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.130.152301 for additional results regarding radial flow and plasma cooling, discussion of an initial condition closer to common practice, and a disclosure of how we obtained opacity estimates. This material includes Refs.
[56] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.130.152301 for additional results regarding radial flow and plasma cooling, discussion of an initial condition closer to common practice, and a disclosure of how we obtained opacity estimates.
[57] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.130.152301 for additional results regarding radial flow and plasma cooling, discussion of an initial condition closer to common practice, and a disclosure of how we obtained opacity estimates.
[58] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.130.152301 for additional results regarding radial flow and plasma cooling, discussion of an initial condition closer to common practice, and a disclosure of how we obtained opacity estimates.
[59]     B. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B (2013)
[60]     B. B. Abelev et al. (ALICE Collaboration), arXiv:2204. 10210.
[61]     G. Nijs and W. van der Schee, Phys. Rev. C 106, 044903 (2022)
[62]     G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke, 91, 039902(E) (2015).
[63]     S. Floerchinger and U. A. Wiedemann, J. High Energy Phys. 11 (2011) 100.
[64]     H. Niemi and G. S. Denicol, arXiv:1404.7327.
[65]     M. Martinez and M. Strickland, Nucl. Phys. A848, 183 (2010).
[66]     W. Florkowski and R. Ryblewski, Phys. Rev. C 83, 034907 (2011).
[67]     W. Florkowski, R. Ryblewski, and M. Strickland, Phys.  024903 (2013).
[68]     M. Martinez, R. Ryblewski, and M. Strickland, Phys. Rev. C (2012)
[69]     M. McNelis, D. Bazow, and U. Heinz, Comput. Phys. Commun. (2021).
[70]     K. Werner, Phys. Rev. Lett. 98, 152301 (2007).
[71]     Y. Kanakubo, Y. Tachibana, and T. Hirano, Phys. Rev. C (2020)
[72]     S. Demirci, T. Lappi, and S. Schlichting, Phys. Rev. D 106, 074025 (2022).
[73]     B. Schenke and R. Venugopalan, Phys. Rev. Lett. 113, 102301 (2014).
[74] Fazelpour, F., Bakhshayesh, A., Alimohammadi, R. et al. An assessment of reducing energy consumption for optimizing building design in various climatic conditions. Int J Energy Environ Eng 13, 319–329 (2022). https://doi.org/10.1007/s40095-021-00461-6
[75] Iranfar A, Saraei A. Numerical study of nanoencapsulated phase change material inside double pipe heat exchanger. Heat Transfer—Asian Res. 2019; 48: 3466–3476. https://doi.org/10.1002/htj.21549
[76] Riyahi, N., Saraei, A., Vahdat Azad, A. et al. Energy analysis and optimization of a hybrid system of reverse osmosis desalination system and solar power plant (case study: Kish Island). Int J Energy Environ Eng 13, 67–75 (2022). https://doi.org/10.1007/s40095-021-00418-9
Volume 2, Issue 2 - Serial Number 4
September 2023
Pages 144-153
  • Receive Date: 08 April 2023
  • Revise Date: 15 April 2023
  • Accept Date: 20 April 2023